Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140681

RESUMO

Bacteria are engaged in a constant battle against preying viruses, called bacteriophages (or phages). These remarkable nano-machines pack and store their genomes in a capsid and inject it into the cytoplasm of their bacterial prey following specific adhesion to the host cell surface. Tailed phages possessing dsDNA genomes are the most abundant phages in the bacterial virosphere, particularly those with long, non-contractile tails. All tailed phages possess a nano-device at their tail tip that specifically recognizes and adheres to a suitable host cell surface receptor, being proteinaceous and/or saccharidic. Adhesion devices of tailed phages infecting Gram-positive bacteria are highly diverse and, for the majority, remain poorly understood. Their long, flexible, multi-domain-encompassing tail limits experimental approaches to determine their complete structure. We have previously shown that the recently developed protein structure prediction program AlphaFold2 can overcome this limitation by predicting the structures of phage adhesion devices with confidence. Here, we extend this approach and employ AlphaFold2 to determine the structure of a complete phage, the lactococcal P335 phage TP901-1. Herein we report the structures of its capsid and neck, its extended tail, and the complete adhesion device, the baseplate, which was previously partially determined using X-ray crystallography.


Assuntos
Bacteriófagos , Lactococcus lactis , Siphoviridae , Siphoviridae/genética , Bacteriófagos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X
2.
Int J Food Microbiol ; 407: 110414, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37778080

RESUMO

Bacterial community collapse due to phage infection is a major risk in cheese making processes. As virulent phages are ubiquitous and diverse in milk fermentation factories, the use of phage-resistant lactic acid bacteria (LAB) is essential to obtain high-quality fermented dairy products. The LAB species Streptococcus thermophilus contains two type II-A CRISPR-Cas systems (CRISPR1 and CRISPR3) that can effectively protect against phage infection. However, virulent streptococcal phages carrying anti-CRISPR proteins (ACR) that block the activity of CRISPR-Cas systems have emerged in yogurt and cheese environments. For example, phages carrying AcrIIA5 can impede both CRISPR1 and CRISPR3 systems, while AcrIIA6 stops only CRISPR1. Here, we explore the activity and diversity of a third streptococcal phage anti-CRISPR protein, namely AcrIIA3. We were able to demonstrate that AcrIIA3 is efficiently active against the CRISPR3-Cas system of S. thermophilus. We used AlphaFold2 to infer the structure of AcrIIA3 and we predicted that this new family of functional ACR in virulent streptococcal phages has a new α-helical fold, with no previously identified structural homologs. Because ACR proteins are being explored as modulators in genome editing applications, we also tested AcrIIA3 against SpCas9. We found that AcrIIA3 could block SpCas9 in bacteria but not in human cells. Understanding the diversity and functioning of anti-defence mechanisms will be of importance in the design of long-term stable starter cultures.


Assuntos
Bacteriófagos , Fagos de Streptococcus , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fagos de Streptococcus/genética , Sistemas CRISPR-Cas/genética , Edição de Genes
4.
J Virol ; 97(3): e0179322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916948

RESUMO

Although more than 12,000 bacteriophages infecting mycobacteria (mycobacteriophages) have been isolated so far, there is a knowledge gap on their structure-function relationships. Here, we have explored the architecture of host-binding machineries from seven representative mycobacteriophages of the Siphoviridae family infecting Mycobacterium smegmatis, Mycobacterium abscessus, and Mycobacterium tuberculosis, using AlphaFold2 (AF2). AF2 enables confident structural analyses of large and flexible biological assemblies resistant to experimental methods, thereby opening new avenues to shed light on phage structure and function. Our results highlight the modularity and structural diversity of siphophage host-binding machineries that recognize host-specific receptors at the onset of viral infection. Interestingly, the studied mycobacteriophages' host-binding machineries present unique features compared with those of phages infecting other Gram-positive actinobacteria. Although they all assemble the classical Dit (distal tail), Tal (tail-associated lysin), and receptor-binding proteins, five of them contain two potential additional adhesion proteins. Moreover, we have identified brush-like domains formed of multiple polyglycine helices which expose hydrophobic residues as potential receptor-binding domains. These polyglycine-rich domains, which have been observed in only five native proteins, may be a hallmark of mycobacteriophages' host-binding machineries, and they may be more common in nature than expected. Altogether, the unique composition of mycobacteriophages' host-binding machineries indicate they might have evolved to bind to the peculiar mycobacterial cell envelope, which is rich in polysaccharides and mycolic acids. This work provides a rational framework to efficiently produce recombinant proteins or protein domains and test their host-binding function and, hence, to shed light on molecular mechanisms used by mycobacteriophages to infect their host. IMPORTANCE Mycobacteria include both saprophytes, such as the model system Mycobacterium smegmatis, and pathogens, such as Mycobacterium tuberculosis and Mycobacterium abscessus, that are poorly responsive to antibiotic treatments and pose a global public health problem. Mycobacteriophages have been collected at a very large scale over the last decade, and they have proven to be valuable tools for mycobacteria genetic manipulation, rapid diagnostics, and infection treatment. Yet, molecular mechanisms used by mycobacteriophages to infect their host remain poorly understood. Therefore, exploring the structural diversity of mycobacteriophages' host-binding machineries is important not only to better understand viral diversity and bacteriophage-host interactions, but also to rationally develop biotechnological tools. With the powerful protein structure prediction software AlphaFold2, which was publicly released a year ago, it is now possible to gain structural and functional insights on such challenging assemblies.


Assuntos
Bacteriófagos , Micobacteriófagos , Mycobacterium tuberculosis , Siphoviridae , Micobacteriófagos/genética , Furilfuramida , Bacteriófagos/genética
5.
Microorganisms ; 10(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422348

RESUMO

Bacteriophages, or phages, are the most abundant biological entities on Earth. They possess molecular nanodevices to package and store their genome, as well as to introduce it into the cytoplasm of their bacterial prey. Successful phage infection commences with specific recognition of, and adhesion to, a suitable host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limit their structural analyses by experimental approaches. The protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of adhesion devices from siphophages belonging to the P335 group infecting Lactococcus spp., one of the most extensively applied lactic acid bacteria in dairy fermentations. The predictions of representative adhesion devices from types I-IV P335 phages illustrate their very diverse topology. Adhesion devices from types III and IV phages share a common topology with that of Skunavirus p2, with a receptor binding protein anchored to the virion by a distal tail protein loop. This suggests that they exhibit an activation mechanism similar to that of phage p2 prior to host binding.

6.
Front Mol Biosci ; 9: 960325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060267

RESUMO

Successful bacteriophage infection starts with specific recognition and adhesion to the host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limits their structural analyses by experimental approaches such as X-ray crystallography and electron microscopy. However, the protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of whole adhesion devices of five representative siphophages infecting Streptococcus thermophilus, one of the main lactic acid bacteria used in dairy fermentations. The predictions highlight the mosaic nature of these devices that share functional domains for which active sites and residues could be unambiguously identified. Such AlphaFold2 analyses of phage-encoded host adhesion devices should become a standard method to characterize phage-host interaction machineries and to reliably annotate phage genomes.

8.
Viruses ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35891516

RESUMO

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.


Assuntos
Vírus da Hepatite E , Hepatite E , Furilfuramida/metabolismo , Vírus da Hepatite E/genética , Humanos , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
9.
Front Mol Biosci ; 9: 907452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615740

RESUMO

In 2021, the release of AlphaFold2 - the DeepMind's machine-learning protein structure prediction program - revolutionized structural biology. Results of the CASP14 contest were an immense surprise as AlphaFold2 successfully predicted 3D structures of nearly all submitted protein sequences. The AlphaFold2 craze has rapidly spread the life science community since structural biologists as well as untrained biologists have now the possibility to obtain high-confidence protein structures. This revolution is opening new avenues to address challenging biological questions. Moreover, AlphaFold2 is imposing itself as an essential step of any structural biology project, and requires us to revisit our structural biology workflows. On one hand, AlphaFold2 synergizes with experimental methods including X-ray crystallography and cryo-electron microscopy. On the other hand, it is, to date, the only method enabling structural analyses of large and flexible assemblies resistant to experimental approaches. We illustrate this valuable application of AlphaFold2 with the structure prediction of the whole host adhesion device from the Lactobacillus casei bacteriophage J-1. With the ongoing improvement of AlphaFold2 algorithms and notebooks, there is no doubt that AlphaFold2-driven biological stories will increasingly be reported, which questions the future directions of experimental structural biology.

10.
Nat Commun ; 13(1): 2802, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589712

RESUMO

CRISPR-Cas systems in prokaryotic cells provide an adaptive immunity against invading nucleic acids. For example, phage infection leads to addition of new immunity (spacer acquisition) and DNA cleavage (interference) in the bacterial model species Streptococcus thermophilus, which primarily relies on Cas9-containing CRISPR-Cas systems. Phages can counteract this defense system through mutations in the targeted protospacers or by encoding anti-CRISPR proteins (ACRs) that block Cas9 interference activity. Here, we show that S. thermophilus can block ACR-containing phages when the CRISPR immunity specifically targets the acr gene. This in turn selects for phage mutants carrying a deletion within the acr gene. Remarkably, a truncated acrIIA allele, found in a wild-type virulent streptococcal phage, does not block the interference activity of Cas9 but still prevents the acquisition of new immunities, thereby providing an example of an ACR specifically inhibiting spacer acquisition.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Bacteriófagos/genética , Streptococcus thermophilus/genética
11.
J Biol Chem ; 298(5): 101923, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413290

RESUMO

Coronavirus (CoV) genomes consist of positive-sense single-stranded RNA and are among the largest viral RNAs known to date (∼30 kb). As a result, CoVs deploy sophisticated mechanisms to replicate these extraordinarily large genomes as well as to transcribe subgenomic messenger RNAs. Since 2003, with the emergence of three highly pathogenic CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2), significant progress has been made in the molecular characterization of the viral proteins and key mechanisms involved in CoV RNA genome replication. For example, to allow for the maintenance and integrity of their large RNA genomes, CoVs have acquired RNA proofreading 3'-5' exoribonuclease activity (in nonstructural protein nsp14). In order to replicate the large genome, the viral-RNA-dependent RNA polymerase (RdRp; in nsp12) is supplemented by a processivity factor (made of the viral complex nsp7/nsp8), making it the fastest known RdRp. Lastly, a viral structural protein, the nucleocapsid (N) protein, which is primarily involved in genome encapsidation, is required for efficient viral replication and transcription. Therefore, CoVs are a paradox among positive-strand RNA viruses in the sense that they use both a processivity factor and have proofreading activity reminiscent of DNA organisms in addition to structural proteins that mediate efficient RNA synthesis, commonly used by negative-strand RNA viruses. In this review, we present a historical perspective of these unsuspected discoveries and detail the current knowledge on the core replicative machinery deployed by CoVs.


Assuntos
Genoma Viral , Vírus de RNA de Cadeia Positiva , SARS-CoV-2 , COVID-19/virologia , Genoma Viral/genética , Humanos , Mutação , Vírus de RNA de Cadeia Positiva/genética , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
12.
Microorganisms ; 9(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683471

RESUMO

Lactic acid bacteria (LAB) are important microorganisms in food fermentation. In the food industry, bacteriophages (phages or bacterial viruses) may cause the disruption of LAB-dependent processes with product inconsistencies and economic losses. LAB phages use diverse adhesion devices to infect their host, yet the overall picture of host-binding mechanisms remains incomplete. Here, we aimed to determine the structure and topology of the adhesion devices of two lytic siphophages, OE33PA and Vinitor162, infecting the wine bacteria Oenococcus oeni. These phages possess adhesion devices with a distinct composition and morphology and likely use different infection mechanisms. We primarily used AlphaFold2, an algorithm that can predict protein structure with unprecedented accuracy, to obtain a 3D model of the adhesion devices' components. Using our prior knowledge of the architecture of the LAB phage host-binding machineries, we also reconstituted the topology of OE33PA and Vinitor162 adhesion devices. While OE33PA exhibits original structures in the assembly of its bulky adhesion device, Vinitor162 harbors several carbohydrate-binding modules throughout its long and extended adhesion device. Overall, these results highlight the ability of AlphaFold2 to predict protein structures and illustrate its great potential in the study of phage structures and host-binding mechanisms.

13.
Viruses ; 12(11)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213034

RESUMO

To provide insights into phage-host interactions during winemaking, we assessed whether phenolic compounds modulate the phage predation of Oenococcus oeni. Centrifugal partition chromatography was used to fractionate the phenolic compounds of a model red wine. The ability of lytic oenophage OE33PA to kill its host was reduced in the presence of two collected fractions in which we identified five compounds. Three, namely, quercetin, myricetin and p-coumaric acid, significantly reduced the phage predation of O. oeni when provided as individual pure molecules, as also did other structurally related compounds such as cinnamic acid. Their presence was correlated with a reduced adsorption rate of phage OE33PA on its host. Strikingly, none of the identified compounds affected the killing activity of the distantly related lytic phage Vinitor162. OE33PA and Vinitor162 were shown to exhibit different entry mechanisms to penetrate into bacterial cells. We propose that ligand-receptor interactions that mediate phage adsorption to the cell surface are diverse in O. oeni and are subject to differential interference by phenolic compounds. Their presence did not induce any modifications in the cell surface as visualized by TEM. Interestingly, docking analyses suggest that quercetin and cinnamic acid may interact with the tail of OE33PA and compete with host recognition.


Assuntos
Bacteriófagos/efeitos dos fármacos , Oenococcus/virologia , Fenóis/farmacologia , Vinho/análise , Ácidos Cumáricos/química , Flavonoides/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Simulação de Acoplamento Molecular , Oenococcus/efeitos dos fármacos , Fenóis/química
14.
Viruses ; 12(8)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796652

RESUMO

Virulent phages infecting L. lactis, an industry-relevant bacterium, pose a significant risk to the quality of the fermented milk products. Phages of the Skunavirus genus are by far the most isolated lactococcal phages in the cheese environments and phage p2 is the model siphophage for this viral genus. The baseplate of phage p2, which is used to recognize its host, was previously shown to display two conformations by X-ray crystallography, a rested state and an activated state ready to bind to the host. The baseplate became only activated and opened in the presence of Ca2+. However, such an activated state was not previously observed in the virion. Here, using nanobodies binding to the baseplate, we report on the negative staining electron microscopy structure of the activated form of the baseplate directly observed in the p2 virion, that is compatible with the activated baseplate crystal structure. Analyses of this new structure also established the presence of a second distal tail (Dit) hexamer as a component of the baseplate, the topology of which differs largely from the first one. We also observed an uncoupling between the baseplate activation and the tail tip protein (Tal) opening, suggesting an infection mechanism more complex than previously expected.


Assuntos
Bacteriófagos/química , Lactococcus lactis/virologia , Proteínas da Cauda Viral/química , Bacteriófagos/genética , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/química , Proteínas da Cauda Viral/ultraestrutura
15.
Microb Biotechnol ; 13(6): 1765-1779, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32525270

RESUMO

Available 3D structures of bacteriophage modules combined with predictive bioinformatic algorithms enabled the identification of adhesion modules in 57 siphophages infecting Streptococcus thermophilus (St). We identified several carbohydrate-binding modules (CBMs) in so-called evolved distal tail (Dit) and tail-associated lysozyme (Tal) proteins of St phage baseplates. We examined the open reading frame (ORF) downstream of the Tal-encoding ORF and uncovered the presence of a putative p2-like receptor-binding protein (RBP). A 21 Å resolution electron microscopy structure of the baseplate of cos-phage STP1 revealed the presence of six elongated electron densities, surrounding the core of the baseplate, that harbour the p2-like RBPs at their tip. To verify the functionality of these modules, we expressed GFP- or mCherry-coupled Tal and putative RBP CBMs and observed by fluorescence microscopy that both modules bind to their corresponding St host, the putative RBP CBM with higher affinity than the Tal-associated one. The large number of CBM functional domains in St phages suggests that they play a contributory role in the infection process, a feature that we previously described in lactococcal phages and beyond, possibly representing a universal feature of the siphophage host-recognition apparatus.


Assuntos
Lactococcus lactis , Proteínas da Cauda Viral , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ligação Proteica , Conformação Proteica , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo
16.
Viruses ; 12(5)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384698

RESUMO

Bacteriophages can play beneficial roles in phage therapy and destruction of food pathogens. Conversely, they play negative roles as they infect bacteria involved in fermentation, resulting in serious industrial losses. Siphoviridae phages possess a long non-contractile tail and use a mechanism of infection whose first step is host recognition and binding. They have evolved adhesion devices at their tails' distal end, tuned to recognize specific proteinaceous or saccharidic receptors on the host's surface that span a large spectrum of shapes. In this review, we aimed to identify common patterns beyond this apparent diversity. To this end, we analyzed siphophage tail tips or baseplates, evaluating their known structures, where available, and uncovering patterns with bioinformatics tools when they were not. It was thereby identified that a triad formed by three proteins in complex, i.e., the tape measure protein (TMP), the distal tail protein (Dit), and the tail-associated lysozyme (Tal), is conserved in all phages. This common scaffold may harbor various functional extensions internally while it also serves as a platform for plug-in ancillary or receptor-binding proteins (RBPs). Finally, a group of siphophage baseplates involved in saccharidic receptor recognition exhibits an activation mechanism reminiscent of that observed in Myoviridae.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Lactococcus lactis/metabolismo , Siphoviridae/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/química , Bacteriófagos/genética , Cristalografia por Raios X , Lactococcus lactis/química , Lactococcus lactis/genética , Lactococcus lactis/virologia , Receptores Virais/genética , Siphoviridae/química , Siphoviridae/genética , Proteínas da Cauda Viral/genética
17.
Biochem Soc Trans ; 48(2): 507-516, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32196554

RESUMO

Bacteriophages (phages) and their preys are engaged in an evolutionary arms race driving the co-adaptation of their attack and defense mechanisms. In this context, phages have evolved diverse anti-CRISPR proteins to evade the bacterial CRISPR-Cas immune system, and propagate. Anti-CRISPR proteins do not share much resemblance with each other and with proteins of known function, which raises intriguing questions particularly relating to their modes of action. In recent years, there have been many structure-function studies shedding light on different CRISPR-Cas inhibition strategies. As the anti-CRISPR field of research is rapidly growing, it is opportune to review the current knowledge on these proteins, with particular emphasis on the molecular strategies deployed to inactivate distinct steps of CRISPR-Cas immunity. Anti-CRISPR proteins can be orthosteric or allosteric inhibitors of CRISPR-Cas machineries, as well as enzymes that irreversibly modify CRISPR-Cas components. This repertoire of CRISPR-Cas inhibition mechanisms will likely expand in the future, providing fundamental knowledge on phage-bacteria interactions and offering great perspectives for the development of biotechnological tools to fine-tune CRISPR-Cas-based gene edition.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sítio Alostérico , Archaea/genética , Archaea/virologia , Bactérias/genética , Evolução Molecular , Modelos Moleculares , Domínios Proteicos , Relação Estrutura-Atividade
18.
Genome Res ; 30(1): 107-117, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31900288

RESUMO

Targeting definite genomic locations using CRISPR-Cas systems requires a set of enzymes with unique protospacer adjacent motif (PAM) compatibilities. To expand this repertoire, we engineered nucleases, cytosine base editors, and adenine base editors from the archetypal Streptococcus thermophilus CRISPR1-Cas9 (St1Cas9) system. We found that St1Cas9 strain variants enable targeting to five distinct A-rich PAMs and provide a structural basis for their specificities. The small size of this ortholog enables expression of the holoenzyme from a single adeno-associated viral vector for in vivo editing applications. Delivery of St1Cas9 to the neonatal liver efficiently rewired metabolic pathways, leading to phenotypic rescue in a mouse model of hereditary tyrosinemia. These robust enzymes expand and complement current editing platforms available for tailoring mammalian genomes.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Streptococcus thermophilus/enzimologia , Streptococcus thermophilus/genética , Animais , Proteína 9 Associada à CRISPR/química , Linhagem Celular , Células Cultivadas , Clivagem do DNA , Humanos , Mamíferos , Camundongos , Camundongos Knockout , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Mol Cell ; 76(6): 922-937.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31604602

RESUMO

In the arms race against bacteria, bacteriophages have evolved diverse anti-CRISPR proteins (Acrs) that block CRISPR-Cas immunity. Acrs play key roles in the molecular coevolution of bacteria with their predators, use a variety of mechanisms of action, and provide tools to regulate Cas-based genome manipulation. Here, we present structural and functional analyses of AcrIIA6, an Acr from virulent phages, exploring its unique anti-CRISPR action. Our cryo-EM structures and functional data of AcrIIA6 binding to Streptococcus thermophilus Cas9 (St1Cas9) show that AcrIIA6 acts as an allosteric inhibitor and induces St1Cas9 dimerization. AcrIIA6 reduces St1Cas9 binding affinity for DNA and prevents DNA binding within cells. The PAM and AcrIIA6 recognition sites are structurally close and allosterically linked. Mechanistically, AcrIIA6 affects the St1Cas9 conformational dynamics associated with PAM binding. Finally, we identify a natural St1Cas9 variant resistant to AcrIIA6 illustrating Acr-driven mutational escape and molecular diversification of Cas9 proteins.


Assuntos
Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/metabolismo , Streptococcus thermophilus/enzimologia , Proteínas Virais/metabolismo , Regulação Alostérica , Bacteriófagos/genética , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/ultraestrutura , DNA/genética , DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Células K562 , Cinética , Mutação , Ligação Proteica , Conformação Proteica , Streptococcus thermophilus/genética , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
20.
Proc Natl Acad Sci U S A ; 116(14): 6760-6765, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872481

RESUMO

Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS)n substrate or a (IdoA-GlcNS)n product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of N-sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed light on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.


Assuntos
Carboidratos Epimerases/química , Ácido Glucurônico/química , Heparina/química , Oligossacarídeos/química , Sítios de Ligação , Carboidratos Epimerases/genética , Catálise , Cristalografia por Raios X , Células HEK293 , Humanos , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...